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➢ A fundamental challenge in Autonomous Vehicles (AV) 
is adjusting the steering angle at different road 
conditions.

➢ We present and study a new end-to-end deep 
architecture to predict the steering angle by using Long-
Short-Term-Memory (LSTM) for co-operative systems.

➢ We utilize multiple sets of images shared between two 
AV to improve the accuracy of controlling the steering 
angle by considering the temporal dependencies between 
the image frames. Our model uses both present and 
future images (shared by vehicle ahead via Vehicle-to-
Vehicle (V2V) communication) as input.

➢ We demonstrate that using series of images in 
cooperative systems can significantly improve the 
accuracy of prediction in terms of RMS and MAE error.

1. Overview

The overview of our proposed vehicle-assisted end-to-end 
system is given above: 

(I) Vehicle 2 (V2) sends his information to Vehicle 1 (V1) over 
V2V communication. (II) V1 combines that information along 
with its own information to control the steering angle. (III) The 
prediction is made through our CNN+LSTM+FC network.

Our deep-learning based approach utilizes two sets of images: 

• (I) coming from the onboard sensors e.g. camera, 

• (II) coming from another vehicle ahead over V2V network.

2. Proposed System

3. Dataset

Visualization of the self-driving car dataset by Udacity: 
number of images (frames) vs. steering angle of each image. 
Udacity dataset forms the ground truth for our experiments. 

➢ Our CNN + LSTM + FC Image sharing model. 

➢ Image set (self): Images obtained from on-board camera 
of the Host Vehicle (V1). Image set (remote): Images 
obtained from vehicle ahead (V2)

➢  For training, we used: 𝑒𝑝𝑜𝑐ℎ𝑠 = 14, 𝑚𝑖𝑛𝑖𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒 =  64, 
Adam Optimizer with Learning Rate of 10−2.

5. Analysis and Results

This work was done as a part of CAP5415 Computer Vision class in Fall 2018 at UCF. We gratefully acknowledge the support of NVIDIA Corporation with the donation of the GPU used for this research.

➢ Benchmark Models chosen for performance 
comparison: 

▪ Model A: Bojarski et al, End to End Learning for Self-
Driving Cars. 2016.

▪ Model B, C:  Shuyang Du, Haoli Guo, and Andrew 
Simpson. Self-Driving Car Steering Angle Prediction 
Based on Image Recognition. Technical report, 2017.

▪ Model D, E: Dhruv Choudhary and Gaurav Bansal. 
Convolutional Architectures  Self-Driving Cars. 
Technical report, 2017.

➢ Model F and G are our proposed architectures. Model F uses 𝑥 = 8 images per set, while Model G uses 𝑥 = 10. 

Model: A B C D E F G

RMSE Training 0.099 0.113 0.077 0.061 0.177 0.034 0.044

Validation 0.098 0.112 0.077 0.083 0.149 0.042 0.044

MAE Training 0.067 x x 0.038 0.046 0.022 0.031

Validation 0.062 x x 0.041 0.039 0.033 0.036

➢ RMSE and MAE comparison: our model F (with 𝑥 = 8 and two image sets 30 frames apart) obtains the minimum 
error values for both training and validation.

6. Concluding Remarks

➢ We present a new approach by sharing images between cooperative self-driving vehicles to improve the control 
accuracy of steering angle.

➢ Our results demonstrate that using shared images increases prediction accuracy compared to other existing models.

➢ Our model is sensor-agnostic in regards that it uses the shared images rather than manual feature decomposition (e.g road 
or lane marking detection).

➢ We are in the process of collecting real data obtained from actual cars communicating over V2V and will perform more 
detailed analysis on that larger new data.

4. Proposed Architecture

➢ Top Figure: Individual error values (in radian) made at each frame over the whole dataset is plotted for Model A, D, E 
and F. The upper and lower red lines highlight the maximum and minimum errors.

➢ Right and Bottom figures: we tested with tuning three 
hyperparameters that affect the system performance; 

▪ We trained our model at various 𝑥 values and the 
minimum 𝑅𝑀𝑆𝐸  is obtained at 𝑥 = 8, which also 
provides minimum validation 𝑅𝑀𝑆𝐸  (0.042).

▪ Changing Δ𝑡 corresponds to changing the distance 
between two vehicles. Within the red area, the 𝑅𝑀𝑆𝐸  
remains lowest (0.044~0.046) but it is non-linearly 
dependent on Δt.

▪ On our experiments, Δ𝑡 = 30 (i.e Vehicles 1.5 seconds 
apart). With 𝑥 = 8 and Δ𝑡 = 30, the training and 
validation losses stabilize at 14th epoch.
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